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Abstract- Finding the Pancyclicity and Vertex connectivity for 

a general graph is the problem in NP complete class. In this 

paper, a bio-computation way of solving these two problems 

has been proposed. DNA computation is more powerful 

because of its massive parallelism and high density storage 

capacity. Thereby, producing the VERTEXCONNECTIVITY, 

PANCYCLIC and GIRTH algorithm solvable in polynomial 

time. The method in tracing the k-cycle and k-cut vertex was 

also used for the computation. 
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I. INTRODUCTION 

 

DNA computation is an emerging Bio-computing model in 

solving most of the NP complete problems, and making them 

solvable in polynomial time. The seminal work was done by 

Adleman in solving Hamiltonian path problem and Lipton 

solving the satisfiability problem. This new computational 

method has more parallelism and high storage capacity, which 

brings enormous break-through in theory of computation, 

graph theory, cryptography. Further both these computing 

ideas were extended in solving graph theoretical problems like 

TSP, coloring, maximum clique, isomorphism, vertex cover, 

etc.In this paper we use DNA to compute the pancyclicity, 

garth, vertex connectivity of the graph. Fo this we imbibe the 

style which Adleman used in solving computational problems 

with DNA. The various DNA operators used in the algorithm 

were also explained. 

 

II. GRAPH PROBLEMS 

 

The following the graph theoretical problems, for which the 

DNA algorithm in polynomial time have been suggested. 

Vertex Connectivity: 

The minimum number of nodes whose deletion froma graph 

 disconnectsit. Vertex connectivity is sometimes called "point 

connectivity" or simply "connectivity." 

Pancyclic: 

An n-vertex graph G is pancyclic if, for every k in the range 3 

≤ k ≤ n, G contains a cycle of length k. 

Girth: 

The girth of a graph is the length of a shortest cycle contained 

in the graph 

 

III. MOLECULAR BIOLOGY 

 

DNA (Deoxyribonuclic acid) is double stranded helical in 

structure. Each strand is a chain of nucleotide. The four 

nucleotides are adenine (A), guanine (G), Thymine (T), 

cytosine (C). DNA obeys the following complementality: A 

always pairs with T and G always pairs with C know as 

Watson-Crick complementarities.  

 

DNA IN CODING OF A PATH 

The idea of encoding a graph path by DNA was introduced by 

Adleman. Consider a graph in fig 1. 

 

Each of its vertex is represented by a string of length ‘n’ using 

combination of A,G,T,C with m=2,let v1=AA, 

v2=AC,v3=TT,v4=CC,v5=AT. A path is given by double 

stranded helix  

 

IV. STICKER BASED DNA COMPUTATION 

 

The sticker model was introduced by S. Roweis et al. In this 

model, there is a memory strand with N bases in length 

subdivided into K non-overlapping regions each M bases long 

(N > MK). M can be for example 20. The substrands (bit 

regions) are significantly different from each other. One sticker 

is designed for each subregion; each sticker has M bases long 

and is complementary to one and only one of the K memory 

regions. If a sticker is annealed to its corresponding region on 

memory strand, then the particular region is said to be on. If no 

sticker is annealed to a region then the corresponding bit is off. 

Each memory strand along with its annealed stickers is called 

memory complex. In sticker model, a tube is a collection of 

memory complexes, composed of large number of identical 

memory strands each of which has stickers annealed only at the 

required bit positions. This method of representation of 

information differs from other methods in which the presence 

or absence of a particular subsequence in a strand 

corresponded to a particular bit being on or off. In sticker 

model, each possible bit string is represented by a unique 

association of memory strands and stickers. This model has a 

random access memory that requires no strand extension and 

uses no enzymes. 

 

STICKER  OPERATIONS: 

 separate (T, T+, T-,i): Consider a test tube T and an 

integer i and create two new test tubes T+ and T-, where 

T+ consists of all memory complexes in T in which 

ithsubstrand is on, while T- is comprised of all memory 

complexes in T in which the ithsubstrand if off. 

 incident(i,j): Checks the existence for ithvertx and jth 

vertex to be adjacent to each other. 

 merge(T1,T2,…,Tn): Take tube T1,…,Tn, produce their 

union T1 U T2 U … U Tn, put the result into the (possibly 

empty) tube Tn. 

mailto:andrewarokiaraj@gmail.com
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 discard (T0): Take a test tube T and empty its contents. 

 set (T-, n+m+ij): Start with a test tube T and an integer i 

and generate a test tube in which the ithsubstrand of each 

memory complex is turned on. 

 clear (T++, n+m+ij): Start with a test tube T and an integer 

i and generate a test tube in which the ithsubstrand of each 

memory complex is turned on. 

 

V.  SUGGESTED ALGORITHM 

 

The initial test tube T0 contains generated random paths of 

Graph G. This is achieved by annealing and ligation. The time 

complexity for this generation is taken as 1 unit because of 

immense parallelism. 

 

The algorithm INCIDENTRELATION provides the incidence 

relation between vertices and edges of a graph. The input of the 

algorithm is an [m+n ;( 
 
)] library T, providing encoded DNA 

of all k-subsets of vertices, where 1<k<n. Two parameters 

lower (l) and upper (u) bound on the set of strands of size n, 

where 1<l<u<n. For those memory complexes whose 

i
th

substrands is turned on, 1<i<u, the algorithm verifies in 

parallel if the vertex-edge pair (vi, ej) is incident and if so, turns 

on the u+j
th

substrand corresponding to the incident edge 

(statements 4-5). At the end of the loop, the strands composed 

of the last m substrands provide the incidence pairs (vi, ej) 

between vertices and edges. The algorithm requires n(m+2) 

steps. 

 

INCIDENTRELATION(T,l,u,m,n) 

Input: [m+n ;( 
 
)] library T, 1<l<u<n 

01. foril to udo 

02.  separate (T, T+, T-,i) 

03.  forj1 to mdo 

04.   if incident(i,j) then 

05.    set (T+, u+j) 

06.  end if 

07. end for 

08. merge(T+,T-,T) 

09. end for 

10. return T 

l=1 and u=5 

 

 
v1 v2 v3 v4 v5 e1 e2 e3 e4 e5 e6 

1 0 0 0 0 1 1 0 0 0 0 

0 1 0 0 0 1 0 1 1 0 0 

0 0 1 0 0 0 1 1 0 1 0 

0 0 0 1 0 0 0 0 1 1 1 

0 0 0 0 1 0 0 0 0 0 1 

The algorithm WEIGHTENING extracts from an input test 

tube T0 those memory complexes in which exactly k of the 

sunstrands m+1,…,m+n are turned on, where 0<k<n. At the 

end of the loop (1-7), the test tube Ti, where 0<i<n, contains all 

memory complexes in which exactly i of the substrands 

m+1,…,m+n are turned on. Thus the test tube Tk provides the 

output of the algorithm. The sticker algorithm requires 

2n[(n+1)/2] = n
2
+n steps. 

 

WEIGHTENING (T0, m, n, k) 

Input: input test tube T0 

01. fori0 to n-1 do 

02.  forji down to 0 do 

03.   separate (Tj, T+, T-, m+i+1) 

04.   merge (T+, Tj+1) 

05.   merge (T-, Tj) 

06.  end for 

07. end for 

08. returnTk 

 

Consider an input tube T0 providing encoded DNA of the 

memory complexes 0001, 0110, 1011. The computation of 

weightening for m=0 and n=4 is as follows. 

 
 T0 T1 T2 T3 T4 

Initial 0001 

0110 

1011 

    

i=1 0001 

0110 

1011    

i=2 0001 0110 

1011 

   

i=3 0001  0110 

1011 

  

i=4  0001 0110 1011  

 

K-CYCLE (T,m,n,k) 

Input: [m+n ;( 
 
)] library T 

01. T EDGEINDUCEDGRAPHS(T,m,n,k) 

02. T  WEIGHTENING (T,m,n,k) 

03. fori 1 to mdo 

04.  separate (T, T+, T-, i) 

05. forj 1 to 2 do 

06.  separate (T+, T++, T+-, n+m+ij) 

07.  set (T+-, n+m+ij) 

08.  clear (T++, n+m+ij) 

09. end for 

10. end for 

11. T  WEIGHTENING (T,m+n,n,0) 

12. if  ┐empty (T) then 

13.  return (T) 

14. else 

15.  report “No k-cycle” 

16. end if 

 

GIRTH (T,m,n) 

Input: [n+(m+n) ; ( 
 
)] library T 

01. fork 3 to ndo 

02.  T0 K-CYCLE (T,m,n,k) 

03.  if  ┐empty (T0) then 

04.   return (T0) 
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05.  end if 

06. end for 

 

PANCYCLIC (T,m,n) 

Input: [n+(m+n) ; ( 
 
)] library T 

01. fork 3 to ndo 

02.  T0 K-CYCLE (T,m,n,k) 

03.  if empty (T0) then 

04.   report “Not Pancyclic” 

05.  end if 

06.  discard (T1) 

07. end for 

08. report “Graph is Pancyclic” 

 

K-CUTVERTEX (T,m,n,k) 

Input: [2n ;( 
 
)] library T 

01. fori 1 to n-1do 

02.  separate (T, T+, T-, i) 

03.  set (T-, n+i) 

04.  forpn+ i to 2n-1do 

05.   separate (T-, T-+, T--, p) 

06.   forq2n down to n+i+1do 

07.    if adjacency (p,q) then 

08.     set (T-+, q) 

09.    end if 

10.   end for 

11.   forj1 to ndo 

12.  separate (T-+, T-++, T-+-, j) 

13.    clear (T-++, n+j) 

14.    merge (T-++, T-+-, T-+) 

15.   end for 

16.   merge (T-+,T--,T-) 

17.  end for 

18.  merge (T-, T0) 

19.  merge (T+, T) 

20. end for 

21. T  WEIGHTENING (T, n+1, n, k+1) 

22. if  ┐empty (T) then 

23.  report “k-cut vertex” 

24.  return (T) 

25. else 

26.  report “No k-cut vertex” 

27. end if 

 

VERTEXCONNECTIVITY (T,m,n) 

Input: [2n ;( 
 
)] library T 

01. fork 2 to n-2do 

02.  T  K-CUTVERTEX (T,m,n,k) 

03.  if  ┐empty (T1) then 

04.   report “k-vertex connectivity” 

05.   return (T1) 

06.  end if 

07. end for 
 

 

VI. CONCLUSION 

 

This paper demonstrates that Wiener Index can be solved using 

DNA computation. This method suggested can be applied for 

general graph in finding Girth, Pancyclic and Vertex 

Connectivity, which are  NP-complete problems. The 

complexity of these algorithm in worse case yields O(n
2
). Also, 

the method in tracing the shortest path was also discussed 

within the algorithm. 
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