
Integrated Intelligent Research (IIR) International Journal of Computing Algorithm

Volume: 03, Issue: 01 June 2014, Pages: 58-60

ISSN: 2278-2397

58

DNA Algorithm for Pancyclicityand Vertex

Connectivity of Graph

Antony Xavier, Andrew Arokiaraj
Department of Mathematics, Loyola College, Chennai , India

Email: andrewarokiaraj@gmail.com

Abstract- Finding the Pancyclicity and Vertex connectivity for

a general graph is the problem in NP complete class. In this

paper, a bio-computation way of solving these two problems

has been proposed. DNA computation is more powerful

because of its massive parallelism and high density storage

capacity. Thereby, producing the VERTEXCONNECTIVITY,

PANCYCLIC and GIRTH algorithm solvable in polynomial

time. The method in tracing the k-cycle and k-cut vertex was

also used for the computation.

Keywords: DNA algorithm, pancyclic, Vertex connectivity,

Girth.

I. INTRODUCTION

DNA computation is an emerging Bio-computing model in

solving most of the NP complete problems, and making them

solvable in polynomial time. The seminal work was done by

Adleman in solving Hamiltonian path problem and Lipton

solving the satisfiability problem. This new computational

method has more parallelism and high storage capacity, which

brings enormous break-through in theory of computation,

graph theory, cryptography. Further both these computing

ideas were extended in solving graph theoretical problems like

TSP, coloring, maximum clique, isomorphism, vertex cover,

etc.In this paper we use DNA to compute the pancyclicity,

garth, vertex connectivity of the graph. Fo this we imbibe the

style which Adleman used in solving computational problems

with DNA. The various DNA operators used in the algorithm

were also explained.

II. GRAPH PROBLEMS

The following the graph theoretical problems, for which the

DNA algorithm in polynomial time have been suggested.

Vertex Connectivity:

The minimum number of nodes whose deletion froma graph

 disconnectsit. Vertex connectivity is sometimes called "point

connectivity" or simply "connectivity."

Pancyclic:

An n-vertex graph G is pancyclic if, for every k in the range 3

≤ k ≤ n, G contains a cycle of length k.

Girth:

The girth of a graph is the length of a shortest cycle contained

in the graph

III. MOLECULAR BIOLOGY

DNA (Deoxyribonuclic acid) is double stranded helical in

structure. Each strand is a chain of nucleotide. The four

nucleotides are adenine (A), guanine (G), Thymine (T),

cytosine (C). DNA obeys the following complementality: A

always pairs with T and G always pairs with C know as

Watson-Crick complementarities.

DNA IN CODING OF A PATH

The idea of encoding a graph path by DNA was introduced by

Adleman. Consider a graph in fig 1.

Each of its vertex is represented by a string of length ‘n’ using

combination of A,G,T,C with m=2,let v1=AA,

v2=AC,v3=TT,v4=CC,v5=AT. A path is given by double

stranded helix

IV. STICKER BASED DNA COMPUTATION

The sticker model was introduced by S. Roweis et al. In this

model, there is a memory strand with N bases in length

subdivided into K non-overlapping regions each M bases long

(N > MK). M can be for example 20. The substrands (bit

regions) are significantly different from each other. One sticker

is designed for each subregion; each sticker has M bases long

and is complementary to one and only one of the K memory

regions. If a sticker is annealed to its corresponding region on

memory strand, then the particular region is said to be on. If no

sticker is annealed to a region then the corresponding bit is off.

Each memory strand along with its annealed stickers is called

memory complex. In sticker model, a tube is a collection of

memory complexes, composed of large number of identical

memory strands each of which has stickers annealed only at the

required bit positions. This method of representation of

information differs from other methods in which the presence

or absence of a particular subsequence in a strand

corresponded to a particular bit being on or off. In sticker

model, each possible bit string is represented by a unique

association of memory strands and stickers. This model has a

random access memory that requires no strand extension and

uses no enzymes.

STICKER OPERATIONS:

 separate (T, T+, T-,i): Consider a test tube T and an

integer i and create two new test tubes T+ and T-, where

T+ consists of all memory complexes in T in which

ithsubstrand is on, while T- is comprised of all memory

complexes in T in which the ithsubstrand if off.

 incident(i,j): Checks the existence for ithvertx and jth

vertex to be adjacent to each other.

 merge(T1,T2,…,Tn): Take tube T1,…,Tn, produce their

union T1 U T2 U … U Tn, put the result into the (possibly

empty) tube Tn.

mailto:andrewarokiaraj@gmail.com
http://mathworld.wolfram.com/Graph.html
http://en.wikipedia.org/wiki/Cycle_graph

Integrated Intelligent Research (IIR) International Journal of Computing Algorithm

Volume: 03, Issue: 01 June 2014, Pages: 58-60

ISSN: 2278-2397

59

 discard (T0): Take a test tube T and empty its contents.

 set (T-, n+m+ij): Start with a test tube T and an integer i

and generate a test tube in which the ithsubstrand of each

memory complex is turned on.

 clear (T++, n+m+ij): Start with a test tube T and an integer

i and generate a test tube in which the ithsubstrand of each

memory complex is turned on.

V. SUGGESTED ALGORITHM

The initial test tube T0 contains generated random paths of

Graph G. This is achieved by annealing and ligation. The time

complexity for this generation is taken as 1 unit because of

immense parallelism.

The algorithm INCIDENTRELATION provides the incidence

relation between vertices and edges of a graph. The input of the

algorithm is an [m+n ;(

)] library T, providing encoded DNA

of all k-subsets of vertices, where 1<k<n. Two parameters

lower (l) and upper (u) bound on the set of strands of size n,

where 1<l<u<n. For those memory complexes whose

i
th

substrands is turned on, 1<i<u, the algorithm verifies in

parallel if the vertex-edge pair (vi, ej) is incident and if so, turns

on the u+j
th

substrand corresponding to the incident edge

(statements 4-5). At the end of the loop, the strands composed

of the last m substrands provide the incidence pairs (vi, ej)

between vertices and edges. The algorithm requires n(m+2)

steps.

INCIDENTRELATION(T,l,u,m,n)

Input: [m+n ;(

)] library T, 1<l<u<n

01. foril to udo

02. separate (T, T+, T-,i)

03. forj1 to mdo

04. if incident(i,j) then

05. set (T+, u+j)

06. end if

07. end for

08. merge(T+,T-,T)

09. end for

10. return T

l=1 and u=5

v1 v2 v3 v4 v5 e1 e2 e3 e4 e5 e6

1 0 0 0 0 1 1 0 0 0 0

0 1 0 0 0 1 0 1 1 0 0

0 0 1 0 0 0 1 1 0 1 0

0 0 0 1 0 0 0 0 1 1 1

0 0 0 0 1 0 0 0 0 0 1

The algorithm WEIGHTENING extracts from an input test

tube T0 those memory complexes in which exactly k of the

sunstrands m+1,…,m+n are turned on, where 0<k<n. At the

end of the loop (1-7), the test tube Ti, where 0<i<n, contains all

memory complexes in which exactly i of the substrands

m+1,…,m+n are turned on. Thus the test tube Tk provides the

output of the algorithm. The sticker algorithm requires

2n[(n+1)/2] = n
2
+n steps.

WEIGHTENING (T0, m, n, k)

Input: input test tube T0

01. fori0 to n-1 do

02. forji down to 0 do

03. separate (Tj, T+, T-, m+i+1)

04. merge (T+, Tj+1)

05. merge (T-, Tj)

06. end for

07. end for

08. returnTk

Consider an input tube T0 providing encoded DNA of the

memory complexes 0001, 0110, 1011. The computation of

weightening for m=0 and n=4 is as follows.

 T0 T1 T2 T3 T4

Initial 0001

0110

1011

i=1 0001

0110

1011

i=2 0001 0110

1011

i=3 0001 0110

1011

i=4 0001 0110 1011

K-CYCLE (T,m,n,k)

Input: [m+n ;(

)] library T

01. T EDGEINDUCEDGRAPHS(T,m,n,k)

02. T WEIGHTENING (T,m,n,k)

03. fori 1 to mdo

04. separate (T, T+, T-, i)

05. forj 1 to 2 do

06. separate (T+, T++, T+-, n+m+ij)

07. set (T+-, n+m+ij)

08. clear (T++, n+m+ij)

09. end for

10. end for

11. T WEIGHTENING (T,m+n,n,0)

12. if ┐empty (T) then

13. return (T)

14. else

15. report “No k-cycle”

16. end if

GIRTH (T,m,n)

Input: [n+(m+n) ; (

)] library T

01. fork 3 to ndo

02. T0 K-CYCLE (T,m,n,k)

03. if ┐empty (T0) then

04. return (T0)

Integrated Intelligent Research (IIR) International Journal of Computing Algorithm

Volume: 03, Issue: 01 June 2014, Pages: 58-60

ISSN: 2278-2397

60

05. end if

06. end for

PANCYCLIC (T,m,n)

Input: [n+(m+n) ; (

)] library T

01. fork 3 to ndo

02. T0 K-CYCLE (T,m,n,k)

03. if empty (T0) then

04. report “Not Pancyclic”

05. end if

06. discard (T1)

07. end for

08. report “Graph is Pancyclic”

K-CUTVERTEX (T,m,n,k)

Input: [2n ;(

)] library T

01. fori 1 to n-1do

02. separate (T, T+, T-, i)

03. set (T-, n+i)

04. forpn+ i to 2n-1do

05. separate (T-, T-+, T--, p)

06. forq2n down to n+i+1do

07. if adjacency (p,q) then

08. set (T-+, q)

09. end if

10. end for

11. forj1 to ndo

12. separate (T-+, T-++, T-+-, j)

13. clear (T-++, n+j)

14. merge (T-++, T-+-, T-+)

15. end for

16. merge (T-+,T--,T-)

17. end for

18. merge (T-, T0)

19. merge (T+, T)

20. end for

21. T WEIGHTENING (T, n+1, n, k+1)

22. if ┐empty (T) then

23. report “k-cut vertex”

24. return (T)

25. else

26. report “No k-cut vertex”

27. end if

VERTEXCONNECTIVITY (T,m,n)

Input: [2n ;(

)] library T

01. fork 2 to n-2do

02. T K-CUTVERTEX (T,m,n,k)

03. if ┐empty (T1) then

04. report “k-vertex connectivity”

05. return (T1)

06. end if

07. end for

VI. CONCLUSION

This paper demonstrates that Wiener Index can be solved using

DNA computation. This method suggested can be applied for

general graph in finding Girth, Pancyclic and Vertex

Connectivity, which are NP-complete problems. The

complexity of these algorithm in worse case yields O(n
2
). Also,

the method in tracing the shortest path was also discussed

within the algorithm.

REFERENCES

[1] Ahmed Al-Kandari, Paul Manuel, IndraRajasingh. Wiener Index of

Certain Interconnection Networks.International Conference of

Mathematical and Computer Science ICMCS 2011.

[2] BojanMohar and Tom Pisanski.How to Compute the Wiener Index of a
Graph. Journal of Mathematical Chemistry 2(1988)267-277.

[3] J in Xu, Xiao Ii Qiang, Kai Zhang, Cheng Zhang, J ing Yang, Rongkui

Zhang. A parallel type of DNA computing model for graph vertex
coloring problem.IEEE 2010.

[4] Leonard Adleman. Computing with DNA. Scientific American,

279(2):54– 61, August 1998
[5] Martyn Amos. Theoretical and Experimental DNA

Computation.Springer. 2005.

[6] Mehdizadeh, Nekoui, Sabahil, Akbarimajd. A Modified DNA-
Computing Algorithm To Solve TSP. IEEE 2006.

[7] Mehdi Eatemadi, Ali Etemadi, & Mohammad-Mehdi Ebadzadeh. Finding

the isomorphic graph with the use of algorithm based on DNA.
International Journal of Advanced Computer Science, Vol. 1, No. 3, Pp.

106-109, Sep. 2011.

[8] Richard J. Lipton. DNA Solution of Hard Computational Problems.
Science, New Series, Vol. 268. : 542-545, April 1995

[9] Yang Jing, Zhang Cheng, Xu Jin, Liu XiangRong&QiangXiaoLi. A

novel computing model of the maximum clique problem based on
circular DNA. Science China Press and Springer-Verlag Berlin

Heidelberg 2010

[10] Xuncai Zhang, Ying Niu, Fei Li, ZuoxinGan. Solving minimum vertex
cover problems with microfluidic DNA computer.IEEE 2012.

[11] ZoyaIgnatova, Israel Martinez, and Karl-Heinz Zimmermann.

